2023-01-13
10 Scikit-Learn Exercises for Aspiring Data Scientists
Here are ideas for 10 scikit-learn exercises for aspiring Data Scientists:
- Build a linear regression model to predict housing prices using the Boston Housing dataset. Relevant scikit-learn tools: LinearRegression
- Train a decision tree classifier to classify iris species using the Iris dataset. Relevant scikit-learn tools: DecisionTreeClassifier
- Use k-means clustering to group similar observations in the Iris dataset. Relevant scikit-learn tools: KMeans
- Build a logistic regression model to predict whether an email is spam or not using the Spambase dataset. Relevant scikit-learn tools: LogisticRegression
- Train a random forest classifier to predict wine quality using the Wine Quality dataset. Relevant scikit-learn tools: RandomForestClassifier
- Use principal component analysis (PCA) to reduce the dimensionality of a dataset and visualize the results. Relevant scikit-learn tools: PCA
- Implement a support vector machine (SVM) to classify images of hand-written digits using the MNIST dataset. Relevant scikit-learn tools: SVC
- Build a neural network using scikit-learn's MLPClassifier to classify images of clothing items in the Fashion MNIST dataset. Relevant scikit-learn tools: MLPClassifier
- Use the KNeighborsClassifier to classify the Breast Cancer dataset Relevant scikit-learn tools: KNeighborsClassifier
- Use the DecisionTreeRegressor to predict the prices of the cars in the Auto-MPG dataset. Relevant scikit-learn tools: DecisionTreeRegressor
Tags:
scikit-learn-exercises
data-science
linear-regression
decision-tree-classifier
k-means-clustering
logistic-regression
random-forest-classifier
principal-component-analysis
support-vector-machine
neural-network
KNeighborsClassifier
DecisionTreeRegressor
Boston-Housing-dataset
Iris-dataset
Spambase-dataset
Wine-Quality-dataset
MNIST-dataset
Fashion-MNIST-dataset
Breast-Cancer-dataset
Auto-MPG-dataset